Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice.
نویسندگان
چکیده
The avian skeletal alpha-actin gene was used as a template for construction of a myogenic expression vector that was utilized to direct expression of a human IGF-I cDNA in cultured muscle cells and in striated muscle of transgenic mice. The proximal promoter region, together with the first intron and 1.8 kilobases of 3'-noncoding flanking sequence of the avian skeletal alpha-actin gene directed high level expression of human insulin-like growth factor I (IGF-I) in stably transfected C2C12 myoblasts and transgenic mice. Expression of the actin/IGF-I hybrid gene in C2C12 muscle cells increased levels of myogenic basic helix-loop-helix factor and contractile protein mRNAs and enhanced myotube formation. Expression of the actin/IGF-I hybrid gene in mice elevated IGF-I concentrations in skeletal muscle 47-fold resulting in myofiber hypertrophy. IGF-I concentrations in serum and body weight were not increased by transgene expression, suggesting that the effects of transgene expression were localized. These results indicate that sustained overexpression of IGF-I in skeletal muscle elicits myofiber hypertrophy and provides the basis for manipulation of muscle physiology utilizing skeletal alpha-actin-based vectors.
منابع مشابه
Effects of in ovo Injection of Zinc Acetate on some Gene Expression Associated with Embryonic Growth and Development, and with Growth and Carcass Characteristics of the Resultant Chicks
This study was conducted in two steps to determine the effects of in ovo injection of zinc acetate (ZAC) on some gene expression associated with embryonic growth and development, and with growth and carcass characteristics of the resultant chicks. In the first step the effect of in ovo injectionofZAC on the expression of insulin-like growth factors (IGFs:IGF-I and IGF-I), myog...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملProduction and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملDlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration
Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, rege...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 270 20 شماره
صفحات -
تاریخ انتشار 1995